Epileptic MEG Spike Detection Using Statistical Features and Genetic Programming with KNN

نویسندگان

  • Turky N Alotaiby
  • Saud R Alrshoud
  • Saleh A Alshebeili
  • Majed H Alhumaid
  • Waleed M Alsabhan
چکیده

Epilepsy is a neurological disorder that affects millions of people worldwide. Monitoring the brain activities and identifying the seizure source which starts with spike detection are important steps for epilepsy treatment. Magnetoencephalography (MEG) is an emerging epileptic diagnostic tool with high-density sensors; this makes manual analysis a challenging task due to the vast amount of MEG data. This paper explores the use of eight statistical features and genetic programing (GP) with the K-nearest neighbor (KNN) for interictal spike detection. The proposed method is comprised of three stages: preprocessing, genetic programming-based feature generation, and classification. The effectiveness of the proposed approach has been evaluated using real MEG data obtained from 28 epileptic patients. It has achieved a 91.75% average sensitivity and 92.99% average specificity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

Recording temporal lobe epileptic activity with MEG in a light-weight magnetic shield

OBJECTIVE To assess the interictal epileptic discharges (IEDs) detection rate of magnetoencephalography (MEG) recordings performed in a new light-weight magnetic shielding (LMSR) concept in a large group of consecutive patients with presumed mesiotemporal lobe epilepsy (MTLE). METHODS Thirty-eight patients (23 women; age range: 6-63 years) with presumed MTLE were prospectively studied. MEG in...

متن کامل

Interpretation of MEG spike source localization in frontal lobe epilepsy with multiple independent spike foci

Magnetic source imaging using a whole-head MEG system provides a more accurate localization of epileptic focus than other routinely used noninvasive methods such as scalp video EEG and magnetic resonance imaging (MRI) [1-3]. However, MEG source localization, as estimated by the single dipole and spherical model, may not fully describe an epileptic region that includes extensive or multiple epil...

متن کامل

Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...

متن کامل

Model-Based Spike Detection of Epileptic EEG Data

Accurate automatic spike detection is highly beneficial to clinical assessment of epileptic electroencephalogram (EEG) data. In this paper, a new two-stage approach is proposed for epileptic spike detection. First, the k-point nonlinear energy operator (k-NEO) is adopted to detect all possible spike candidates, then a newly proposed spike model with slow wave features is applied to these candid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017